关于上学期数学教学工作计划三篇
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,是时候开始写计划了。计划怎么写才不会流于形式呢?下面是小编收集整理的上学期数学教学工作计划3篇,欢迎大家分享。
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。二班学生思维非常活跃,但后进面较大,有少数学生不上进,思维不紧跟老师。一班学生总体成绩均衡,有大多数同学基础特差,问题较严重。:要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析
第十一章。全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十二章。轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十三章实数。从平方根于立方根说起,学习有关实数的有关知识,并以这些知识解决一些实际问题。
第十四章。一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景,使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程,为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握。
四、提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
一、指导思想
以教学改革为动力、以校本教研为载体、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本组教育教学工作,力争预备、初一、初二、高一、高二的常规教学,初三、高三的复习备考工作更上一个台阶。
二、具体措施
1、相互学习,提高素质
利用教研备课、活动时间,认真学习有关教育教学理论,继续加强三新学习,吸收最新教改信息,提升教育理论,改进教学方法,同时开展走出去,请进来的办法进行校际交流,扩大视野,丰富提高,完善积累,做到善学才能善解,善研才能善教、善教才有高效。加强新教师的培训。采取以老带新的方式,要求新老教师互听课四节以上,老教师要在教材处理、备课、写教案、教学技能、作业布置和批改、学生心理辅导、个人专业知识的提高等方面与新教师进行交流。
2、开展说课资源共享
教学研究重要的是认真钻研教材内容,吃透教材大纲,这是搞好教研活动,做好教学工作的根本保证。集体备课是发挥集体优势,钻研教材的有效途径,在集体备中,以说课的形式对教材的教学目标、重点、难点及成因、编者意图、教材的前后联系进行阐述,提出突出重点,解决难点的措施,说本单元的备课的内在联系,典型练习的变式训练,解题的规律方法技巧,思想方法的渗透,学法指导等,进行组内教流,互相切磋,发挥骨干教师的传帮带作用。
3、改变课型,注意实效
结合校本教研,有针对性地加强课堂教学内容方法、方式的改革,充分发挥学科指导组的作用,开展多种形式的课型,研究课型。如预备、初一、高一新教材的研究课、初二、高二教学的概念引入课、初三、高三专题复习的研究课等形式上有概念的引入课,例习题课、讲解课、试卷评讲课、专题复习课、多媒体应用课等,以此为纽带带动各组的教研教改活动的开展,加强听课评课的监督与指导,改进教学方法,运用现代教学手段,提升教育理念,明确教育目的,提高教学质量,同时积极组织本组教师参加校级、区级、市级的各类公开课,优质课评比、教案评比等,以此促进提高教师的综合素质,丰富教育教学经验。
4、加强管理,落实常规
根据教育教学的需要,结合学校要求,加强备、教、改、导、考、评、析的教学常规管理与检查。以备课组长、学科指导组为主体,对每位教师的教学情况进行逐一检查、监督、及时反馈、具体指导,对备课组的教学进度的安排,集体备课的落实,单元检测的组织等工作进行检查,使本组教学工作有条不紊,注重实效,各项教学工作全面提高。同时,根据学校的总体安排,结合学校的创建实际,积极参加学校组织的各项教研、教改、比赛等活动,认真准备,争取取得最佳的成绩,为参加上一级组织的相应的比赛,推荐最佳人选,为学校和数学组获得更大的荣誉.
5、勤于总结,深化提高
通过理论学习,常规培训,鼓励引导教师,结合教学实际,认真总结,积极思考,撰写有关方面的论文,如数学素质教育、创新教育的理论、探讨和实践探索、数学课程标准讨论、典型例题评析、新教材教学、教学艺术、教学访谈、教学活动课教学等内容。以此提高教师的理论素养和实践能力,真正提高教育教学质量。
三、具体安排:
(1)2月:教材、大纲的学习:
新课标的学习,课件制作的研讨
(2)3月上旬:教案作业检查总结;教学比武课程的安排;
下旬:教学比武及总结
(3)4月上旬:教改信息交流及教学经验的探讨;
下旬:布置中考制卷、阅卷任务及具体要求
(4)5月:总结中考工作;布置初一、初二、高一、高二数学兴趣小组成立,安排上课教师
(5)6月:组织预备、初一、初二、高一、高二的数学竞赛;
做好期末复习迎考工作;总结全期工作。
一、教学目标:
1、知识与技能
⑴ 理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析;
⑵ 基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序.
2、过程与方法
在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的.约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤.
3、情感与价值观
⑴ 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献.
⑵ 在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力.
二、教学重点、难点:
重点:理解辗转相除法与更相减损术求最大公约数的方法.
难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言.
三、教学过程:
(一)创设情景、导入课题
1.研究一个实际问题的算法,主要从哪几方面展开?
算法步骤、程序框图和编写程序三方面展开.
2.在程序框图中算法的基本逻辑结构有哪几种?
顺序结构、条件结构、循环结构
3.在程序设计中基本的算法语句有哪几种?
输入语句、输出语句、赋值语句、条件语句、循环语句
4.思考1:18与30的最大公约数是多少?你是怎样得到的?
5. 思考2:对于8251与6105这两个数,它们的最大公约数是多少?你是怎样得到的?
由于它们公有的质因数较大,利用上述方法求最大公约数就比较困难.有没有其它的方法可以较简单的找出它们的最大公约数呢?
(板书课题)
(二)师生互动、探究新知
1. 辗转相除法
思考3:注意到8251=6105×1+2146,那么8251与6105这两个数的公约数和6105与2146的公约数有什么关系?
我们发现6105=2146×2+1813,同理,6105与2146的公约数和2146与1813的公约数相等.
思考4:重复上述操作,你能得到8251与6105这两个数的最大公约数吗?
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的.
利用辗转相除法求最大公约数的步骤如下:
第一步:用较大的数m除以较小的数n得到一个商 和一个余数 ;
第二步:若 =0,则n为m,n的最大公约数;若 ≠0,则用除数n除以余数 得到一个商 和一个余数 ;
第三步:若 =0,则 为m,n的最大公约数;若 ≠0,则用除数 除以余数 得到一个商 和一个余数 ;
……
依次计算直至 =0,此时所得到的 即为所求的最大公约数.
思考5:你能把辗转相除法编成一个计算机程序吗?
第一步,给定两个正整数m,n(m>n).
第二步,计算m除以n所得的余数r.
第三步,m=n,n=r.
第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.
INPUT m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL r=0
PRINT m
END
文档为doc格式