分数除法教案
作为一位无私奉献的人民教师,编写教案是必不可少的,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?下面是小编帮大家整理的分数除法教案,仅供参考,欢迎大家阅读。
分数除法教案1教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:A,7/8是什么数 它表示什么
B,7÷8是什么运算 它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
分数除法教案2教学过程:
一、复习旧知识,引进新课
1、把8个饼平均分给4个人,每人分得几个?谁能列式?
2、把4个饼平均分给4个人,每人分得几个?
这两道题,是我们以前学过的,把一个数平均分成几份,求每一份是多少,
什么方法来计算?
二、激思讨论,探讨新知识
1、教学例1。
(1)把1个饼平均分给3个人,每人分得几个?怎样列式?
(2)求每人分得几个?用除法来列式。那每人到底分得多少个饼呢?你是怎么想的?(课件演示:一张饼的1/3就是1/3张饼。)
2、揭示课题:这节课我们就来研究“分数与除法”。让学生提出学习这一节课想知道的问题。
【设计意图:运用学生对已有知识“分数的意义”和“除法的意义”的理解,沟通分数与除法的关系,让学生明确在计算除法的时候,往往得不到整数的结果,可以用分数来表示。】
三、实际操作,寻找规律
教学例2。
1、把3张饼平均分给4人该怎么计算呢? “3 ÷ 4”表示什么意思?现在每
人能分得一张饼吗?
2、指导学法,让学生动手操作:利用3个圆形纸片,动手折一折、剪一剪、
分一分,看看平均每人能分到多少块?
3、各组汇报分法及分的结果。
组1:我们是把这3张饼,每个都平均分成4块,一共分成12块,每人得3块。
组2:一个饼一个饼地分。先将第一个饼平均分成4份,每人分得其中的一份;
将第二个饼也平均分成4份,每人也分得其中的一份;将第三个饼同样平均分成4份,每人又分得其中的一份。将每个人得到的饼拼在一起,也是3/4张饼。
组3:三个饼叠在一起,平均分成4份,每人分得其中的一份。每人分得3张饼的1/4,也是3/4张饼。
4、电脑屏幕显示三种分法,让学生尝试说出推理过程。
(1)把3个饼平均分成4份,我们可以吧什么看作单位“1”?
一份是多少个饼?一份是三个饼的几分之几?
(2)从屏幕显示和操 ……此处隐藏9751个字……所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。
另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣
课前准备
教师准备 PPT课件、长方形包装纸
学生准备 长方形纸
教学过程
⊙创设情境,提出问题
1.问题导入。
师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。
请你们列出算式并计算。
(1)每人吃张饼,4个人共吃多少张饼?
(2)把2张饼平均分给4个人,每人分得多少张饼?
(3)有2张饼,每人分得张饼,可以分给几个人?
(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)
2.揭示分数除法的意义。
讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。
⊙合作交流,探究新知
1.引导参与,探究新知。
(1)出示教材55页例题。
师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?
(2)动手操作,分一分,涂一涂。
师:请大家拿出一张长方形纸,涂色表示出这张纸的。
(学生动手操作,教师巡视指导)
师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。
(学生活动,教师指导)
(3)观察发现。
师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?
预设
(教师利用课件配合学生汇报)
生1:把平均分成2份,每份是2个小格,占这张纸的。
生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。
设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。
2.初探算法。
师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?
预设
生:分母不变,被除数的分子除以整数得到的商作商的分子。
提出质疑,验证猜想,理解新知。
(1)尝试验证,发现问题。
师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?
(学生汇报验证的结果)
师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)
分数除法教案15教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
教学后记
文档为doc格式